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Sparse Portfolios for High-Dimensional Financial
Index Tracking

Konstantinos Benidis

Abstract—Index tracking is a popular passive portfolio manage-
ment strategy that aims at constructing a portfolio that replicates
or tracks the performance of a financial index. The tracking error
can be minimized by purchasing all the assets of the index in ap-
propriate amounts. However, to avoid small and illiquid positions
and large transaction costs, it is desired that the tracking portfolio
consists of a small number of assets, i.e., a sparse portfolio. The
optimal asset selection and capital allocation can be formulated
as a combinatorial problem. A commonly used approach is to use
mixed-integer programming (MIP) to solve small sized problems.
Nevertheless, MIP solvers can fail for high-dimensional problems
while the running time can be prohibiting for practical use. In
this paper, we propose efficient and fast index tracking algorithms
that automatically perform asset selection and capital allocation
under a set of general convex constraints. A special consideration
is given to the case of the nonconvex holding constraints and to the
downside risk tracking measure. Furthermore, we derive special-
ized algorithms with closed-form updates for particular sets of con-
straints. Numerical simulations show that the proposed algorithms
match or outperform existing methods in terms of performance,
while their running time is lower by many orders of magnitude.

Index Terms—Index tracking, sparsity, majorization-minimi

zation.

UND managers follow two basic investment strategies,
F namely: active and passive. In active management
strategies, the fund managers assume that the markets are not
perfectly efficient and through their expertise and superior
prediction methods they hope to add value by choosing high
performing assets. On the contrary, the passive management
strategies are based on the assumption that the market cannot be
beaten in the long run. The passive managers have less flexibility
and their role is to conform to a closely defined set of criteria.

Analysis of historical data has shown that the majority of the
actively managed funds do not outperform the market in the long
run [1]. Further, the stock markets have historically risen and
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therefore reasonable returns can be obtained without the active
management’s risk. These reasons have prompted the investor’s
interest into more passive management strategies.

Index tracking, also known as index replication, is one of
the most popular passive portfolio management strategies. It
refers to the problem of reproducing the performance of a mar-
ket index. Although index tracking is driven from the financial
industry, it is in fact a pure signal processing problem: an {s-
norm regression of the financial historical data subject to some
portfolio constraints. Further, the sparse index tracking problem
(that we will introduce shortly) is similar to many sparsity for-
mulations in the signal processing area, such as the “lasso” [2],
in the sense that it is a regression problem with some sparsity
requirements.

There are two main approaches to the index tracking problem:
the static and the dynamic. In the static approach, we construct
and hold the tracking portfolio during the time horizon of in-
terest. On the contrary, in the dynamic setting the portfolio is
readjusted in a more ad-hoc manner following a trading strategy.
For both approaches it is essential the design of an appropriate
tracking portfolio regardless of the underlying strategy. In this
paper, it is not our scope to provide a trading strategy but rather
the tools for constructing efficient tracking portfolios. Therefore,
we consider fixed holding periods. Nevertheless, the application
of the proposed algorithms in a dynamic approach is straight-
forward since the only change is the readjustment decision and
not the design process.

The most straightforward way to construct an efficient index
tracking portfolio is to buy appropriate quantities of all the assets
that compose the index, a technique known as full replication,
given that the true index construction weights are available.
Following this approach, a perfect tracking can be achieved.
However, there are some important drawbacks. First, a portfolio
consisting of all the assets incorporates too many small and
illiquid stocks. This translates into higher risk to investors since
an illiquid stock is hard to sell if we are looking to exit and
we might have to sell it for less than the current market price.
Further, allocating capital to all the assets increases significantly
the transaction costs.

Another popular way to engage in index tracking is to pur-
chase an exchange traded fund (ETF). An ETF is like a stock
but its value tracks closely a given index. It is constructed either
by using derivative products (synthetic ETF) or the underly-
ing components of the index (physical ETF). Many physical
ETFs use full replication of the index they are tracking, e.g.
the Standard and Poor’s Depositary Receipts (Bloomberg ticker
SPY) based on the S&P 500 and the Nasdaq 100 Trust Shares
(Bloomberg ticker QQQ) based on the Nasdaq 100. However,
there are also many ETFs using a sparse construction, where rep-
resentative sampling, with 80-95% of the underlying securities
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being used, or aggressive sampling, with only a tiny percentage
being used [3]-[6].

There are several challenges that we face when we engage
in index tracking. First, due to the price changes of the assets,
the relative quantities of the holding portfolio will change daily
and, after a period of time, they may diverge significantly from
their designed value. In order to compensate for these changes
we need to rebalance our portfolio frequently in order to recover
the initial design. Further, when we construct a portfolio with
the goal of tracking a financial index, we use the historical data
of the assets that compose the index in order to find a portfolio
that meets some criteria. However, since the dynamics of the
market and the composition of an index constantly change, it is
not wise to use data from the distant past but rather only from a
recent period. This signifies the importance of holding a tracking
portfolio for a limited amount of time since it can become obso-
lete if it does not take into account all of these changes. These
reasons make necessary the redesign of a tracking portfolio after
a period of time.

The above challenges lead to a natural trade-off between the
tracking efficiency and the transaction costs. By rebalancing
or redesigning frequently our portfolio we can achieve a better
tracking but we increase the transaction costs, especially when
the portfolio consists of a large number of assets as in full
replication. A natural way to deal with these problem is to use
a small number of assets to (approximately) replicate an index.
This leads to the construction of a sparse index tracking portfolio
[71, [8], which is the main focus of this paper.

The rest of the paper is organized as follows. Section II
reviews the related work and the different problem formula-
tions. Section III presents the solution of the sparse index track-
ing problem considering a set of general convex constraints.
Closed-form update algorithms are further proposed for partic-
ular constraint sets. Section IV deals with the non-convex hold-
ing constraints, proposing general and particular algorithms.
Section V presents possible constraints and different tracking
error functions. Section VI provides a convergence analysis and
an acceleration scheme that increases the convergence rate of
the proposed algorithms. Section VII presents numerical experi-
ments on real and synthetic data. Finally, the paper is concluded
in Section VIII.

Notation: The sequence of nonnegative integers is denoted by
N. The real field is denoted by R, while R (R'}') denotes the
set of (nonnegative) real vectors of size m, and R" " (R"*™)
the set of (nonnegative) real matrices of size n x m. Vectors
are denoted by bold lower case letters and matrices by bold
capital letters i.e., x and X, respectively. A general entry of a
vector x is denoted by z, its i-th entry by z;, the i-th column
of matrix X by x;, and the (i-th, j-th) element of a matrix by
x;;. A vector of zeros is denoted by 0 and a vector of ones by
1, while I denotes the identity matrix. Their dimension will be
implicit from the context. The superscript () " denotes the trans-
pose of a matrix. (x)* = max(x, 0) where the max operator is
performed elementwise. x ® y denotes the Hadamard product
of x and y. Diag(x) is a diagonal matrix formed with x at its
principal diagonal, and diag(X) is a column vector consisting
of all the diagonal elements of X. ||x||o denotes the number of
nonzero elements of a vector x € R™. S »= 0 means that the
symmetric matrix S is positive semidefinite, while Al(nSaZ( is its
maximum eigenvalue. card(.A) denotes the cardinality of the set
A xp ) = [T @is1, ... 2;] ", with i < j integers.
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II. RELATED WORK

We first provide some basic definitions that we will use
throughout the paper. Assume that an index is composed of
N assets. We denote by r’ = [r},... 7%]T € RT and X =
[r1,...,r7r]" € RT*Y the returns of the index and the N as-
sets in the past 7" days, respectively, with r; € RY denoting the
returns of the N assets at the ¢-th day'. Further, b € RY de-
notes the normalized benchmark index weights such thatb > 0,
b'1 =1and Xb = r’.

A commonly used tracking measure is the empirical tracking
error (ETE) which measures how closely the tracking portfolio
replicates the index [7]-[10]. It is defined as:

1
ETE(w) = THXW—I'I’H;, (1)
where w denotes the portfolio we wish to design that must
satisfy w > 0 and w ' 1 = 1, among other possible constraints.

Note that (1) assumes a constant w in the corresponding 7T’
days, which implicitly means that the portfolio is rebalanced
on a daily basis. During the design process, this is a necessary
approximation (that we will make in all the following formu-
lations) in order to have a tractable problem. However, in the
out-of-sample evaluation of the derived portfolios we should
always take into account the portfolio changes for a proper per-
formance assessment (see Section VII).

The first approach of sparse index tracking is to decompose
the task into two steps, namely stock selection, where we select a
subset of the assets, and capital allocation, where we distribute
the capital among the selected assets. Various stock selection
methods have been proposed. A widely used method, especially
for a market capitalization weighted index, is to select the largest
K < N assets according to their market capitalization [11].
Another approach is to select the assets that have similar return
performances as the index, i.e., the K most correlated assets to
the index [12], [13]. Finally, a selection based on cointegration
has been proposed where the idea is to select K assets so that
there exists a linear combination of their log-prices cointegrated
well with the value of the index [13], [14].

Once a subset of K assets has been selected we need to assign
the capital in a proper manner. A naive allocation is to distribute
the capital among the selected assets proportional to the origi-
nal weights with their summation equal to 1. This requires that
the benchmark portfolio weight vector b and all its changes
(the benchmark weight vector is consistently rebalanced by the
indices providers) are known exactly, which could be very ex-
pensive. For example, in 2006 the index sponsors S&P, Dow
Jones, MSCI, and FTSE earned total revenues of $1.66 billion
from the ETF providers and therefore the ETF provides were
even thinking of cutting these costs by setting up their own mar-
ket indices®. Although this naive allocation is easy and fast, it is
not optimized. Further, in many cases the index weight vector
b is not available. To this end, we can use the following opti-
mized allocation that does not make any use of the index weight

Pt —=Pt—1
>

"The return r; of an index or an asset at time ¢ is defined as r; = Fo=

where p; and p;_; denote the price at time ¢ and ¢ — 1, respectively.
2See “ETF providers float idea of setting up their own market indices”,
published in Financial Times on 2017-05-24.
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vector b [11]:

SIX(w ©8) |

minimize
subjectto  (w®s) 1 =1,
w >0, 2)

where s; is 1 if the ¢-th stock is selected and O otherwise, with
s'1 = K. This is effectively the minimization of the tracking
error using only the selected assets. To make the solution more
robust, one can remove a few assets each time and apply this
idea iteratively several times to achieve enough sparsity [7].

The previous methods allocate the capital in two steps (i.e.,
asset selection and capital optimization) and it is not clear how
optimal the resulting tracking portfolio is. Another approach
that unifies these two steps is to directly penalize the cardinality
of the tracking portfolio [7], [15]:

1
THXW — rbH; + Alwllo

minimize
w
subjectto w'1l =1,
w >0, 3)

where A > 0 is a parameter that controls the sparsity of the
portfolio, i.e., we get sparser solutions for larger values of A.
With this formulation, we jointly perform an asset selection and
allocation of the capital to the selected assets. Notice that this
problem is highly non-convex due to the £y-“norm” term®. We
revisit this problem in Section III, where we will rely on the MM
method to iteratively upperbound (3), while the major difficulty
will be to find the right surrogate function.

All the constraints we have imposed in the problem formula-
tion (3) are convex. In practice, the constraints that are usually
considered in the index tracking problem can be written in a
convex form. However, there is one exception. It is common
for the fund managers to impose some holding constraints to
avoid extreme positions or brokerage fees for very small orders,
which translates into non-convex constraints. In that case the
optimization problem takes the following form:

o S !

minimize
subjectto w'1l =1,
los<w<u®s,
s € {0,1}", (4)

where s; = Zy,,,-0; plays the role of the indicator function,

but here s is a variable and not fixed as in (2), and 1, u € RY,
with 0 <1 < u, are the lower and upper holding constraints,
respectively, for the selected stocks. For clarity of presentation,
we will consider the simple case ] =1 -1 and u = u - 1, with
0 <[ < u, however, our approach holds for the general case.
Many approaches have been proposed to deal with problem
(4). A practical heuristic is to solve the problem without the
binary variable s (as in (1)), then select the assets with weights
larger than a certain threshold, and finally reoptimize the weights
with s fixed (as in (2)). Another approach is to use mixed-
integer programming (MIP). Problem (4) is indeed an MIP and

3Although Zp with p < 1 is not a norm, it is a common abuse of notation to
call it as such. To highlight this difference we will use quotation marks when
we are dealing with an £, with p < 1, i.e., £,-“norm”.

commercial solvers (e.g., Gurobi, CPLEX) can be used [10].
However, they are appropriate only for small or medium sized
problems since it is hard to find an optimal solution within
practical time limits when the dimension becomes large. We
revisit problem (4) in Section IV.

In other works, a common approach is to approximate the
¢y-“norm” with the non-convex ¢,-“norm”, where p < 1, and
use a heuristic algorithm to solve the optimization problem [7],
[16]. In [17], the authors approximate the ¢)-“norm” with a non-
convex function that becomes convex in the limit. Thus, they
propose a gradual non-convexity method. In [18], the authors
consider a general formulation and propose an algorithm that
determines whether or not to rebalance a given portfolio. In
[19], a mean-variance analysis or the index tracking portfolios
is provided based on the classical Markowitz mean-variance
framework [20], while in [21], Brodie et al. consider the problem
of portfolio selection within the Markowitz framework including
an /1 -penalty. In [22], Takeda et al. formulate an MIP problem.
Since it is hard to solve it in practice due to the prohibiting
running time, they propose a greedy algorithm. Finally, genetic
algorithms [8], [10], [11], [23], [24] and differential evolution
[9], [23], [25] heuristics have been proposed. However, these
methods are not able to guarantee optimality of the solution
and, in general, they have inferior performance compared to an
MIP solver [10].

In all the problem formulations presented in this section we
have included only a minimum set of constraints for illustration
purposes. In the rest of the paper we will use a general constraint
set that will include all the possible convex constraints, i.e., w €
W, where W is convex. We will further assume that {w|w >
O,le =1} C W. When we need to include a non-convex
constraint we will indicate it separately.

III. SPARSE INDEX TRACKING

In this section we focus on problem (3), i.e., the joint asset
selection and capital allocation problem. First, we approximate
the /y-“norm” by a continuous and differentiable function, albeit
still non-convex. Then, we use the majorization-minimization
framework to derive an algorithm based on the first-order Taylor
expansion. Finally, we propose a specialized iterative closed-
form update algorithm for a particular set of constraints.

A. {y Approximate Function

A popular convex approximation of the fy-“norm” that pro-
motes sparsity is the ¢;-norm (as indicated by the blue dashed
line in Fig. 1), i.e., the least absolute shrinkage and selection
operator (LASSO) technique [2]. Unfortunately, this approxi-
mation does not work in index tracking since we require (among
other constraints) the weights to be nonnegative and their sum-
mation to be equal to one. Thus, the ¢; -norm trivially becomes:
|lwl; = |w|"1 =w"1 =1, which is a constant.

Instead of the ¢;-norm, we can approximate the ¢;-*“norm”
(to be exact the indicator function) by the following function*:

_ log(1 + |wl|/p)

o) = Qog T 1) ®

4More precisely, (5) approximates the indicator function and then we can use
N
Iwlo =>":", Tqw, 20}
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Fig. 1.  Approximation of the indicator function with p,, 1 (w) and p, .2 (w)
withp = 1073,

where 0 < p < 1isaparameterand p, (w) — Zy, 0} asp — 0.
This function was also used in [26] to replace the ¢;-norm that
led to the well known iteratively reweighted /; -norm minimiza-
tion algorithm, and in [27], [28] for sparse eigenvector extrac-
tion.

In practice, p, (w) is a good approximation of the {y-“norm”
when |w| € [0,1]. In many cases we are interested in approx-
imating the ¢y-“norm” in other intervals, e.g., in the interval
[0, u] where w < 1 is an upper bound of the index weights, or in
the interval [0, [], where [ is a lower bound of the index weights.
The use of the latter will become clear in Section IV where we
introduce the non-convex lower holding constraints. To this end,
we use a modified version of the function p, (w) defined as:

_log(1 + |wl|/p)
ppa (W) = log(1 +v/p)

where v > 0. Notice that p,(w) = p,1(w). The function
pp.~(w) is a good approximation of the indicator function in
the interval [0, ] as shown in Fig. 1.

For the multivariate case, it is convenient to define:

; (6)

Ppy (W) = [pp(W01),-- ., ppy (wN)]T~

Now, we can approximate problem (3) as follows:

L 1
minimize fHXW —rb H§ + )\]-Tpp.u (w)

subjectto w € W. @)

Here, we have set v = u, where u is an upper bound of the
weights specified in W. If there is not an upper bound constraint
then implicitly u = 1.

This problem is not convex since the function p, ., (w) is
concave (for w > 0). To deal with the non-convexity we will use
the majorization-minorization (MM) framework that is briefly
introduced for completeness.

B. Majorization-Minimization

The majorization-minimization algorithm is a way to handle
optimization problems that are too difficult to face directly [29],
[30]. Consider a general optimization problem

minimize f (x)
X

subjectto x € &,
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where X is a closed set. We say that the function f(x) is
majorized at a given point x(¥) (with k& denoting iteration) by
the surrogate function g (x|x¥)) if the following properties are
satisfied (in words if it is a tight upper bound):

o f (X(k)) =y (X(k)|x(k)),

e f(x)<g (X|X(k)) ,Vx e X,

e Vf (X(kf)) =Vyg (X(k)|x(k))‘
Then, x is iteratively updated as:

<k +1)

= argming (X|X(k)> . (8)
xeX

With this scheme, it is easy to prove that the objective value
is decreased monotonically at each iteration, i.e., f (x(k“)) <
g(xFD[x(M)) < g(x®)x(H)) < f(xH)).

In practice, the main difficulty in the derivation of an MM
algorithms is to find an appropriate surrogate function such that
the minimizer of g(x|x(*)) can be easily found or even have
a closed-form solution. This is not a trivial task since there
is no systematic way of constructing surrogate functions and
the derivation depends highly on the structure and the special
characteristics of each problem [30].

C. First-Order Taylor Approximation

Since p, o (W) is separable® we just need to find a majoriza-
tion function for the univariate case, i.e., p, ,(w). Here, fol-
lowing [26], an upper bound is provided for p, - (w) at each
iteration point w(*) by its first-order Taylor expansion.

Lemma 1: The function p, - (w), with w > 0, is majorized
atw®) by g, - (w,w™) = d, , (W )w + ¢, -, (w*)), where

1
d (wkF)y= — - 9
DY (w ) m(p—kw(")) ( )
and
(k) k
cpry (W) = log (1+wl/p) ___w® (10
DY K1 m(p+w<"'))’

with k1 = log(1 + +/p).

Proof: The function p, - (w) is concave for w > 0. Thus, an
upper bound of the function is its first-order Taylor approxima-
tion at any point wy > 0 [15], [26]:

_ log(1+w/p)

pp (W) = log(1 +7/p)

log (1 +wy/p) + (w— wo)}
0

<t {
~ log(l +7/p)

=dy w+by,,

P+ w

where d,, , and b, - are given by (9) and (10), respectively. W
In the following, it is convenient to define:

= [dp-,"r (k)),

d},’f% (wy

.
sy ()] (1)

k
¢

{Czw (wgk)% o Cpy (w%{))} (12)

Here, separable means that each entry Pp.~ (w;) of p, (W), as defined in
(III-A), is a function only of w;.
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Algorithm 1: LAIT - Linear Approximation for Index
Tracking problem (7).

1: Set k = 0, choose w(®) € W
2: repeat:

3: Compute d,(ylf?t according to (11) and (9)

4 Solve (13) and set the optimal solution as wl
5 k—k+1
6: until convergence
7: return w'*)

k+1)

Now, discarding the constant terms, at the (k + 1)-th iteration
we can solve the following convex optimization problem:
1 '
mingnize T HXW —r H; + )\d](,]j,lfw
subjectto w € W, (13)

where we have again set v = u.
Algorithm 1 summarizes the above iterative procedure. We
refer to it as LAIT.

D. Specialized Algorithms

In the previous section we derived an iterative algorithm that
works for a general convex constraint set V. One step of the
algorithm is to solve (13) which is convex and therefore it can
be done by any standard solver. Nevertheless, since the problem
has to be solved several times during the MM procedure, the
computational cost can be significant.

Interestingly, for specific constraint sets we can derive al-
gorithms that have a closed-form update and therefore do not
require a solver. In particular, we consider the following convex
set parametrized by u:

W, ={wlw'1=1,0<w <ul}, (14)

that is, we require the weights to be nonnegative, to have an
upper bounds u, and their summation to be equal to one.

First, we state two results that will be useful in the derivation
of the closed-form update algorithms. Consider an optimization
problem of the following form:

T

minimize w'w4+q'w
w

subjectto w € W, (15)

where q € RY. The following propositions provide a waterfill-
ing structured solution of (15), considering two special cases
ie., v = 1and u < 1, respectively [31].

Proposition 1 [AS1(q)]: The optimal solution of the opti-
mization problem (15) with v = 1 is

1 +
W= <—2(u1 +q)) ; (16)
with
_ _ZieAqi +2
r= card(A) {17
and
A= {ilp+q <0}, (18)

where A can be determined in O(log(V)) steps.

Proof: See Appendix A. |

We refer to the iterative procedure of Proposition 1 as AS; (q)
(Active-Set for u = 1).

Proposition 2 [AS, (q)]: The optimal solution of the opti-
mization problem (15) with u < 11is

+
wr = (min (—;(ul + q),ul)) ) (19)
with
ien, @i + 2 — card(By)2u
M:_Z By ( 1) , (20)
card(By)
and
B = {iln+aq < —2u}, @0
By = {i| —2u < pu+¢q <0}, (22)

where B and B, can be determined in O(N log(N)) steps.

Proof: See Appendix B. |

We refer to the iterative procedure of Proposition 2 as AS,, (q)
(Active-Set for general u < 1). For simplicity we have con-
sidered the simple case where u = u1l, however the extension
to a general u is trivial and the differences are mentioned in
Appendix B.

Notice that if we set ©w = 1, AS; and AS, do not become
the same algorithm although they will return the same optimal
solution. Further, a good practice would be to use a smart ini-
tialization of the sets 13; and 3, based on the solution of AS;.
A more extensive discussion about the iterative algorithms of
Propositions 1 and 2 can be found in Appendix A and B, respec-
tively. We will illustrate the benefit of AS; and AS,, (with and
without initialization) for solving (15) in the numerical results
of Section VII.

Now, let us return to the optimization problem (13). By ex-
panding the norm of the objective function and dropping the
constants we can rewrite the optimization problem as follows:

2

1 ) T
minimize —w' X' Xw + (Ad;fg — TXTrb) w

(23)

In order to get a closed-form update algorithm as in (15), we
need to majorize the quadratic term and decouple the variables.

Lemma 2 [32, Lemma 1]: Let L be a real symmetric ma-
trix and M another real symmetric matrix such that M > L.
Then, for any point w(*) € R, the quadratic functionw ' Lw is
majorized at w*) by w Mw + 2w (L — M) w(®) 4+ w(®)
(M —L)w*),

Based on Lemma 2, if we set L; = £X'X, and M; =
)\(LI)I, then M; >~ L; holds and the quadratic term of (23)

max
can be majorized at w(*) by:

subjectto w € W,,.

w Liw<w Mw+ 2w/ (Ly — M) w4+ const

max max

= \Eww 2w’ <L1 — )\(LI)I) w*) + const

Now, after dropping the constant terms, the new optimization
problem at the (k + 1)-th iteration becomes:

N

TW—}—q1 w

minimize w
w

subjectto w € W,, 24)
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Algorithm 2: SLAIT - Specialized LAIT for (7) with W =

W,
1: Set k = 0, choose w(®) € W,
2: Compute )\g;;)
3: repeat:
4: Compute q§k> according to (25), (11) and (9)
5: Solve (24) with AS; |, (q; ) from Propositions 1, 2
and set the optimal solution as w(*+1)
6: k—k+1
7: until convergence
8: return w'")
where
6 — 1 (o A@OT) w4 adh) — 2xTy
q = )\(Ll> 1 max w DU T r

max
(25)
is a constant depending on w(¥). The optimization problem
(24) is now in the form of (15) and can be solved via AS; |, (q1 ),
where AS; |, () means AS; (-) or AS, ().
Algorithm 2 summarizes the overall iterative procedure to
solve (7) with W = W,,. We refer to it as SLAIT.

E. Computational Complexity

In this section we study the computational complexity of the
proposed algorithms LAIT and SLAIT.
First we consider the LAIT algorithm. In every iteration we

need to compute the vector dl()ki)b which can be done in O(N)
operations. Then, in the general case, we need to solve a quadrat-
ically constrained quadratic program (QCQP) (depending on the
constraints it may reduce to a quadratic program (QP)). These
problems can be reformulated as second order cone programs
(SOCP) with complexity O(N?3* log(1/4)) per iteration, using
the NT direction [33], where ¢ is the accepted duality gap. Thus,
keeping only the higher order terms, LAIT has an overall com-
plexity of O (Nier N log(1/8)), where Nigr is the number of
iterations.

In the case of the SLAIT algorithm we do not need to call

a solver. First, we need to compute L; and A(X) in O(N2T)

and O(N?) operations, respectively. Then, in every iteration we
need to compute d,% (O(N)), perform a matrix-vector mul-
tiplication (O(N?)) and finally some vector additions (O(N))
in order to obtain qgk). The last step is to find the next iterate
point which can be efficiently computed by the proposed algo-
rithms AS; or AS,, in O(log(NN)) or O(N log(N)) steps, where
the complexity of each step is O(N). Thus, again keeping the
higher order terms, the overall complexity of the algorithm is
O (N?T + NieeN? log(N)).

IV. SPARSE INDEX TRACKING WITH HOLDING CONSTRAINTS

In this section we revisit problem (4) assuming a general
set of convex constraints V' and the non-convex holding con-
straints that we indicate separately. Again, we approximate the
£p-*norm” by the continuous differentiable function p, - . Now,
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Fig. 2. Penalty functions f; (w) and fp_l(w) forl = 0.01andp = 107%.

the problem can be reformulated as follows:

minimize
w

X 24 1Ty ()

subject to

weW,

l1OZiws0y S W< uOIiyso)- (26)

Here, we have used the notation Z(y-o} = [Z{w, >0},
oLy >U}]T. Notice that the upper bound constraint w <
u® Iy 0y is equivalent to w < u and therefore it can be
included in W.

In the special case where [ = 0, this problem becomes equiv-
alent to (7) and the algorithms proposed in Section III can be
used to solve it. Thus, we assume that [ > 0.

A. Penalization of Constraint Violations

The lower bound constraint of (26) is non-convex and hard to
deal with directly. Thus, instead of this constraint we can include
an additional term in the objective that penalizes all the non-
zero w;’s that are less than [. Since the lower bound constraint
is separable for each w; we can use a penalty function that
penalizes each w; independently. A suitable penalty function
for a general entry w is the following:

fi(w) = (I{O<w<l} = w)+

Again, we can approximate the indicator function with pj, ., (w),
given in (6). Since we are interested for the interval [0, 1] we
select v = [. We define the approximate penalty function as:

Fra(w) = (ppa(w) -1 —w)" .

In Fig. 2 we illustrate f;(w) and £, ;(w) for | = 0.01.
Now, we include the additional penalty term in the objective
and the new optimization problem becomes:

27

(28)

minimize %HXW — [+ AL py (W) + T, (W)

subjectto w e W, (29)

where v is a parameter vector that controls the penalization
of the weights that violate the lower bound, and f, ;(w) =
[fp(w1), ..., fyu(wy)]T. This problem is not convex since
pp.u(w) is concave and f,;(w) is neither convex nor concave
as shown in Fig. 2.
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Algorithm 3: LAITH - Linear Approximation for the Index
Tracking problem with Holding constraints (29).

1: Set k = 0, choose w(®) ¢ W
2: repeat:

;’f} , d}f& according to (11) and (9)
Compute C;(fz) according to (12) and (10)

Solve (31) and set the optimal solution as w#+1)

4
5
6: k—k+1
7
8

(O8]

Compute d

: until convergence

. return w*)

Let us first focus on the third term of the objective, i.e., the
function f, ;(w). Again, since the function is separable we need
to deal with the univariate case only.

Lemma 3: The function £, ; (w) is majorized at w*) € [0, 4]
by the convex function

hy 1 (w,w™)) = ((dp_l(w(k>) - 1) w + ¢, (wh)) - l>+ )
(30)
where d,, ;(w*)) and ¢, ;(w!*)) are given by (9) and (10), re-
spectively.
Proof: From Lemma 1 we have that p, ;(w) < d, ;(w*)
w + c,,ﬂl(w(k)) for w > 0. Thus, for fp_,l(w) we get:

fp,l(w) = max (p,(w) -l —w,0)
max ((dp,l(w(k))w + cpi(w®)) -1 —w, 0)

IN

max ((dp_l(w(k)) - 1) w + ¢y (wh) -1, 0) .

This function is convex since it is the maximum of two convex
(actually affine) functions, i.e., fi = (d,;(w®) -1 —1)w +
cpr(w*)) - Tand fo = 0. |

The second term of (29) can be majorized with the linear
majorization function presented in Lemma 1. The optimization
problem at the (k + 1)-th iteration becomes:

minimize
w

1 Xw - |° + Ad) T
T 2 pou

X +
+v" (Diag ()} ©1-1) w+ ) 01)

subjectto w € W, 3
where d;,kg , d]()lfjl) are given by (11), and Cg(»ljl) by (12).

Algorithm 3 summarizes the above iterative procedure. We
refer to it as LAITH.

B. Specialized Algorithms

As in the case presented in Section III-D, if we restrict the
constraint set VV for problem (31) we can derive algorithms that
have a closed-form update and therefore do not require a solver.
Here, we consider the same set WV, given by (14).

To get a closed-form update algorithm we need to majorize the
objective of (31) and transform it into an appropriate form. Let
us begin with the majorization of the third term of the objective.

L \
0 0.005 0.01 0.015 0.02 0.025 0.03
w

Fig. 3. Penalty function fpl(w) linear (h, ;(w)) and smooth linear
(fz,,‘,f,,(w)) upper bounds of fp,l(w), and quadratic upper bound ¢, . ;(w),
forl = 0.01,¢ = 107 and p = 107,

This term is separable and therefore we need to focus only in
the univariate case, i.e., in the function h,, ; (w, w*)) as defined
in Lemma 3. However, h,, ;(w,w*)) is not smooth due to the
max operator. Thus, a smooth majorization function cannot be
defined at the point where h,, ; (w, w*)) is not smooth due to the
non-differentiability of h,, ; (w,w*)) [34]. To this end, we will
use a smooth approximation of the function ()" defined as:

T+ Va4 e
2 b

where 0 < € < 1 controls the approximation. Applying this re-
sultin h, ; (w,w*)), we can define its smooth version as:

k k ¢
oy e 10,09 = aFw + k) 4 \/(;(k)w + 8k))?2 + 62’

32

where o) = d,, ;(w*) -1 — 1, and B*) = ¢, ;(w*)) - 1. 2

Lemma 4: The function h,, . ;(w,w™®)) is majorized at w®

by the quadratic convex function g, . ;(w, w*)) = a, . ;(w*))
w? + b, 1 (WEw + ¢, 1 (w*)), where

(k)2
(k)y — (™) 33
ape (W) s (33)
(k) 3(k) (k)
bp.e,l(w(k)) - e ﬁ + ¢ 3 (34)
' K2 2

(F) () Y ( (F) g (F) (k) (k)24 c2
k al™w al" 't 425 +2(8 +€
Cp et (wh) = e Ne w2 ) p B ve)

3 is an optimization irrelevant constant, with ko =
2\/(a(l<:)w(k:) _|_ﬁ(k))2 +e2,

Proof: See Appendix C. |

In Fig. 3 we illustrate this majorization procedure with all the

intermediate steps.
For notational convenience we define:

and
Bk)

k k k
al’) = lapca (@), apea(wi )]

k k k
b = s (@), .. by (W)
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Algorithm 4: SLAITH - Specialized LAITH for (29) with
W=W,.
Set k = 0, choose w(®) € W),
Compute )\nt;'f()
repeat:
Compute qém according to (37), (11) and (9)

Solve (36) with AS;, (q2) from Propositions 1, 2
k+1)

Nk e

and set the optimal solution as w
k—k+1

: until convergence

. return w(¥)

A

Now, using the quadratic majorizer of Lemma 4 and expanding
the norm, we can rewrite the optimization problem as follows:

o))

.
b, @ V) w

D€

1 '
minimize w' (TXTX + Diag (a(m

D€l

2
k b
+ <)\d§)_’7)1 - =X'r +

subjectto w e W,. (35)

Again, in order to get a closed-form update algorithm we need
to majorize the quadratic term of the objective and decouple the

variables. Following similar arguments as in Section III-D, we
set Ly = %XTX + Diag(a;];),l ©v), and M, = /\SnI;;l()I. The
new optimization problem at the (k + 1)-th iteration becomes:

Ol

mingnize w'w+ qy W
subjectto w € W, (36)
where
o' = (2 (L2 = XEDT) wit) + aalf)
2 T (k)
— TX r’ + bp,f,l ®© V) 37

is a constant depending on w(¥). The optimization problem
(36) is in the form of (15) and can be solved via AS; |, (q2) from
Propositions 1 and 2.

Algorithm 4 summarizes the overall iterative procedure to
solve (31) with W = W,,. We refer to it as SLAITH.

C. Computational Complexity

In this section we study the computational complexity of
the proposed algorithms LAITH and SLAITH. The analysis is
very similar to the computational complexity analysis of the
LAIT and SLAIT algorithms in Section III-E. Therefore we
will highlight only the differences.

The overall complexity of LAITH is the same as the complex-
ity of LAIT, i.e., O (MterN3‘5 1og(1/6)), since in each iteration
we need to compute dz(fl) , d;,]fz, and C;()],Cz) in O(N), and then solve
an SOCP.

Similarly, the complexity of SLAITH is the same as the
complexity of SLAIT, i.e., O(N2T+NiterN2 log(N)). It
requires some more vector computations and vector-vector
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TABLE I
COMPLEXITY OF THE PROPOSED ALGORITHMS

Algorithm Complexity
LAIT/LAITH O (Nyer N3 log(1/6))
ALAIT/ALAITH O (N2T + Ny N2 log(N))

multiplications but these are lower order operations that do not
affect the complexity order.
In Table I we summarize the complexity of all algorithms.

V. EXTENSIONS

In this section we provide a digression on different design
choices that can be made for the index tracking problem.

Throughout the paper we have considered the index tracking
problem with a set of general convex constraints V. We have
analyzed some special cases of W, i.e., the set WV, defined in
(14) and the non-convex holding constraints, providing specific
algorithms. However, the list of possible constraints that a fund
manager may impose on the index tracking problem is not long,
making the specialized algorithms very useful in practice.

Apart from the constraints mentioned already, i.e., budget
(w'1 = 1), no short selling (w > 0) and the non-convex hold-
ing constraints, we may wish to mitigate the weights for some
groups of stocks (e.g., sectors), or respect the index sector repar-
tition for the selected subset of stocks. These are all linear
constraints that do not need any special consideration. Finally,
there is one more commonly used convex constraint, namely
the turnover constraint: |[W — w||; < C. Here, w refers to the
tracking portfolio in the previous time period, and C' is an upper
bound on the total change in the portfolio between two consecu-
tive periods [10], [18]. The purpose of the turnover constraint is
to control the transaction costs when we rebalance our portfolio.
Nevertheless, this constraint is more meaningful in a dynamic
tracking setting and it does not add any difficulty into the prob-
lem since it is already convex.

Another design choice that a fund manager has to make is
the selection of an appropriate tracking measure. We have con-
sidered the empirical tracking error, defined in (1), which is
a commonly used measure for static index tracking. However,
there are many other choices that come naturally for the index
tracking problem [18]. For example, another common measure
is the downside risk (DR) relative to an index which is defined
as:

Lo +112

DR(w) = TH(r —Xw)*[3, (38)

that is, we are interested in minimizing the tracking error only

when the index beats our portfolio. The downside risk is a convex

function and therefore we can easily replace the ETE term in

problems (7) and (29) and all the derivations for the general
algorithms will still hold.

Interestingly, if we consider the set W, , specialized algo-
rithms can be derived for the DR too, as described next.

Lemma 5: The function DR(w) is majorized at w'*) by the

quadratic convex function % Hrb — Xw — y(k) ’ 2, where
+
y*) = — (Xw<k> - rb> (39)
Proof: See Appendix D. |
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Now, we can follow the same procedure as in the ETE case,
i.e., expand the /;-norm and majorize the quadratic term based
on Lemma 2. In the case where we do not include the holding
constraints, the optimization problem at the (k + 1)-th iteration
can be written in the form of (15), with

(k) _ 1 L, k k
= iy (2 (1 - AT
max
2
+TXT(y<k)—rb)>. (40)

Therefore it can be solved efficiently by the proposed SLAIT
algorithm where we need to compute qs instead of q;. If we
include the holding constraints, the problem at the (k -+ 1)-th
iteration can be written in the form of (15), with

(k) 1 Ly k k
ol = 57 (2 (B - M) w0
2 0Tk b (k)
+TX (y — T )+bp,€,l @V 9 (41)

and we can use the proposed algorithm SLAITH where we need
to compute q, instead of q».

Other possible tracking measures are the Value-at-Risk (VaR)
relative to an index [35], and the conditional Value-at-Risk
(CVaR) relative to an index [36]. If the returns follow an el-
liptical distribution, VaR and CVaR are convex functions and
in fact admit a closed-form expression [37]. In the case of non-
elliptical distributions, CVaR remains convex (although VaR
does not), and can be approximated by sampling the distribu-
tion [36]. In general, CVaR is preferred more in practice since
it is a coherent measure of risk while VaR is not [38]. Both VaR
(for elliptical distributions) and CVaR (for any distribution) can
be used in our framework and replace the ETE defined in (1).
CVaR can be included also as a convex constraint instead of
replacing ETE in the objective [39].

Apart from the various performance measures, we can select
a different penalty function. In all the presented formulations
we have used the /y-norm to penalize the differences in the
portfolio and the index. However, in order to be more robust to
outliers we could use the Huber penalty function defined as (for
the scalar case):

(e 2] < M,
ole) = {M<2x| _M), el > M,

where M > 0 is a parameter. We can majorize this function
at a point xy with a quadratic function of the form apx® +
by, where (ag,by) = (1,0) for |zo| < M, and (ag,by) =
(M/|xo|, M(|xo| — M)) for |zo| > M. The proof is straight-
forward and omitted. With this quadratic bound, we can use the
Huber penalty instead of the ¢s-norm with some minor mod-
ifications in the derived algorithms. Similar arguments can be
made for the ¢;-norm and many more penalty functions.

(42)

VI. CONVERGENCE ANALYSIS AND ACCELERATION

A. Convergence

All the algorithms presented in this paper are based on the
majorization-minimization framework. Given the sequence of
points (x(¥)),cn generated by the algorithm, we know that
the sequence of objective values evaluated at these points is

non-increasing. Since the constraint sets in our problems are
compact, the sequence of objective values is bounded. Thus, it is
guaranteed to converge to a finite value. In this section, we will
analyze the convergence property of the sequence (x<"’>) keN
generated by the algorithms.

A unified convergence proof can be established given that
all the optimization problems satisfy a minimum set of condi-
tions. In particular, we require that all the conditions presented
in Section III-B and (8) hold, that the objective function f is
continuous and bounded below, and the constraint set is convex.
These conditions are met by all the optimization problems we
focused on. Further, consider the following assumptions [30,
Section II.C]:

1) The sublevel set lev;(x,) [ = {x € X|f(x) < f(x0)}

is compact given that f(xq) < +o0.

2) f(x) and g(x|x*)) are continuously differentiable with

respect to x.

3) Forall x*) generated by the algorithm, there exists y > 0

such that Vx € X', we have

(Vg (xlx®™) =V (x® x¥))T(x —x¥) < 7| = x¥?.

Given this minimum set of requirements and assumptions,
the following are guaranteed:
1) The sequence of points (x*)); .y produced by the MM
algorithms converges.
2) The objective value f is non-increasing and converges to
alimit f*, where f* is a stationary value.
Therefore, it is guaranteed that all the algorithms presented
in this paper converge to a stationary point.

B. Acceleration

The derivation of all the proposed algorithms is based on
the majorization-minorization framework. In order to obtain
surrogate functions that can be easily solved in closed-form
many terms of the original functions were majorized twice.
This can possibly lead to loose bounds which translates to a
significantly large number of iterations for the MM algorithms
to convergence. Thus, in this section we describe an acceleration
scheme, called SQUAREM, that can improve significantly the
convergence speed of the proposed algorithms.

SQUAREM was originally proposed in [40] to accelerate EM
algorithms. The general idea is to evaluate the next two points
of an iterative algorithm, compute a step-length 7, and combine
them to produce a point that decreases the objective value more
than the two single steps. Since MM is a generalization of EM
and the update rule of MM is just a fixed-point iteration like EM,
we can easily apply the SQUAREM acceleration method to MM
algorithms with minor modifications. Without loss of generality
we will present the accelerated version only of Algorithm 2
(SLAIT). The accelerated version of Algorithm 4 follows in a
similar manner.

We denote by Fsparr(-) the fixed-point iteration map of
the SLAIT algorithm, i.e., w**1) = Fg orr(w*)), and by
SLAIT(w(*)) the value of the objective function of (7) at the
k-th iteration. The general SQUAREM method can cause two
possible problems to the MM algorithms. First, the updated
point may violate the constraints. To solve this issue we can
project to the feasible set which is equivalent to solving the
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Algorithm 5: Accelerated SLAIT.

1: Set k = 0, choose w(®) € W,
2: repeat:

3: wi = Fsparr(wi)
4: wy = Fsparr(wr)
5: r=w; — wh)
6: V=Wy —W| — T
7 Compute the step-length n = — Ni“lé
8: w=wlt —2nr 4+ 1’v
9: w = AS; |, (—2w) (projection)
10: while SLAIT(w) > SLAIT(w(*))
11: n — (77 — 1)/2
12: w=w —2nr + v
13: w = AS;}, (—2w) (projection)
14: end while
15: wihtl) = w
16: k—k+1

17: until convergence
18: return w'")

following optimization problem:
minimize ||z — w3
z

subjectto  z € W,, 43)

where w is the updated point and z the projected. By expand-
ing the norm, the objective can be rewritten as z' z — 2w ' z.
This problem is in the form of (15) and can be solved effi-
ciently by AS,}, (—2w) from Propositions 1 and 2. The second
problem is that the acceleration may violate the descend prop-
erty of the MM algorithm. Thus, a backtracking step is adopted
halving the distance of the step-length n and —1. As n — —1,
SLAIT(w**+1)) < SLAIT(w(*)) is guaranteed to hold®. The
accelerated SLAIT is summarized in Algorithm 5.

C. Sequential Decreasing Scheme

Throughout the paper we have used the function p,, as a proxy
of the ¢y-“norm”. The approximation is controlled by the pa-
rameter p and in particular, as p — 0 we get p, — {;. However,
by setting a small value to p it is likely that the algorithm will
get stuck to a local minimum [26]. To solve this issue we start
with a large value of p, i.e., a “loose” approximation, and solve
the corresponding optimization problem. Then, we sequentially
decrease p, i.e., we “tighten” the approximation, and solve the
problem again using the previous solution as an initial point. In
practice we are interested only in the last, most “tight” problem.

A similar approach is followed for the penalty term presented
in (28) and the parameter v. We start with a small value of
v and solve the corresponding optimization problem. If there
are constraint violations we increase the value of v and solve
the problem again using the previous solutions as an initial
value. The algorithms terminate when there are no constraint
violations.

Ify = —1 thenw(F+1) = Fg arp (FSLAIT(W(k) )) ,1.e.,it becomes equiv-
alent to just taking two normal steps in the non-accelerated algorithm. Thus, the
non-increasing objective value is guaranteed by the MM properties.
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TABLE II
INDEX INFORMATION

Index Data Period Tir Tist
S&P 500 01/01/10 - 31/12/15 252 252
Russell 2000  01/06/06 - 31/12/15 1000 252

VII. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the pro-
posed algorithms using historical data of the indices S&P 500
(Bloomberg ticker SPX:IND) and Russell 2000 (Bloomberg
ticker RTY:IND). For both indices we use a rolling window
where a training period 7y, is used to derive the optimal track-
ing portfolio and a testing period Ti to approximate the index
movement with the derived portfolio. The details of each index,
i.e., the window sizes Ty and Ty, and the total data period 7'
are presented in Table II.

All the experiments were performed on a PC with a 3.20 GHz
i5-4570 CPU and 8 GB RAM.

A. Sparse Index Tracking

In this first experiment we compare the performance of the
proposed algorithms LAIT and SLAIT. The solution of the opti-
mization problem (3) given by the Gurobi solver for MIP prob-
lems, denoted as MIPg,,, serves as the principal benchmark’.
We further compare the proposed methods with the Hybrid Half-
Thresholding algorithm [16], denoted as HHT, and the Diversity
Method [7], denoted as DM, /5, where the £,-“norm” approxi-
mation is used, with p = 1/2.

All the optimization steps of LAIT are evaluated using the
MOSEK solver (SLAIT does not require a solver). For the MIP
we chose the Gurobi solver since it is known for its good perfor-
mance in mixed integer problems. The HHT algorithm (requires
the minimization of a QP) is implemented using the function
“quadprog” of Matlab which is also used by the authors of [16].
The /,,-*norm” approximation of the diversity method is evalu-
ated using the build-in function “fmincon” of Matlab. We keep
the minimum constraint set YW, as defined in (14) for all algo-
rithms, with v = 0.05. Finally, for practical reasons we have set
the maximum running time of all algorithms to 1200 seconds.

Initially, we use the first 7i; days to design the portfolios, while
we evaluate their performance in the next 7}, days. In the end of
this testing period we need to redesign our portfolios. For this,
we roll the training window and use the last 73, days to design,
and the next Ti to evaluate the new portfolios. This scheme is
shown pictorially in Fig. 4. The total number of testing days is
T — T, i.e., we remove from the total data period 7' the initial
window that we use only for training. Note that the portfolios
we design at the beginning of each testing period do not remain
constant during the testing period but they constantly change due
to the price changes. To this end, for notational convenience we
stack the tracking portfolios of all the testing days in a matrix®

Nx(T-Ty
W e RY (T,

7The MIP solution is optimal if the algorithm runs until full convergence.
However, in practice one has to stop the MIP after a certain amount of time so
the final solution may be suboptimal as seen later in the numerical results.

8The use of a matrix is just to present (44) in a compact form. It is possible
to denote the portfolio at the ¢-th day as w; and use an appropriate summation.
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Fig. 4. Illustration of the rolling training and testing windows.

First, we measure how close the proposed algorithms can
replicate a given index. To this end, for a given sparsity level
we compute the magnitude of the daily tracking error (MDTE)
defined as:

1
T_Ttr

where X € R(T-Tw)*N and r® € R” T+, All the tracking er-
ror result are presented in basis points (bps)’. Apart from the
tracking error, we further compute the average'” running time
of each algorithm for the different sparsity levels.

In Figs. 5(a) and 6(a) we compare the tracking error of all the
algorithms using the daily returns of the S&P 500 and Russell
2000, respectively. We observe that the proposed algorithms out-
perform significantly the HHT and DM, /, algorithms in terms
of tracking error. Compared to MIPg,;, the proposed algorithms
perform slightly better for small cardinalities and have effec-
tively the same MDTE for larger cardinalities.

The average running time of the algorithms is presented in
Figs. 5(b) and 6(b) for the two indices, respectively. We ob-
serve that all the algorithms apart from MIPg,, need only a few
seconds to converge. On the other hand, the MIPg,, algorithm
consumes always all the allowed running time.

MDTE =

[diag(XW) =", (44)

B. Sparse Index Tracking with Holding Constraints

Now, we consider the case where we have the non-convex
holding constraints and we compare the algorithms LAITH and
SLAITH. The solution of the optimization problem (4) given by
the Gurobi solver for MIP problems, denoted as MIPgy,.h, serves
as the main benchmark. The algorithms HHT and DM, /, are
not considered here since they are not suitable for non-convex
constraints. Again, we keep the minimal constraint set W, as
defined in (14), with © = 0.05. For MIPg,.., we further include
the non-convex lower bound constraint with [ = 0.001. The
proposed algorithms take into account this constraints through
the penalty term in the objective.

The comparison of the algorithms in terms of tracking error
using the daily returns of the S&P 500 and Russell 2000 is
given in Figs. 7(a) and 8(a), respectively. In this case, it is clear
that the proposed algorithms outperform the MIPg,j, algorithm
in terms of tracking error. This is due to the fact that now the
problem is more complex and an MIP solver needs substantially
more time than 1200 seconds to reach to a good solution. In
Figs. 7(b) and 8(b) we illustrate the average running time of
the algorithms. Again, LAITH and SLAITH converge orders of
magnitude faster than MIPgy;.p,.

One basis point is equal to 0.01%.
10For a fixed sparsity level, we need to design [Ti Z"} portfolios, one for
each testing window. The time averaging is over these portfolios.

C. Downside Risk

In all the simulations up to this point, the proposed algorithms
and all the benchmarks minimize the empirical tracking error
(ETE), defined in (1). However, as shown in Section V, we
can use any convex tracking error in the proposed algorithms.
In particular, we examined in details the downside risk (DR)
measure, defined in (38). The goal of DR is to replicate the index
while avoiding too large drawdowns. Therefore, the tracking
error of the DR portfolio becomes worse but the drawdowns
are less severe (a crucial attribute especially for high leverage
positions) which results to higher returns overall. To this end,
the DR portfolio cannot be compared in a fair manner with
the benchmarks that are designed to only replicate an index.
Nevertheless, it is interesting to analyze the impact the different
tracking measures have in the behavior of the designed portfolio.
Therefore we examine the returns of portfolios with different
tracking measures, taking into account the associated transaction
costs.

First, we consider the following common transaction costs
model'! that applies in U.S. markets: the cost per transaction is
$0.005 - n, where n is the number of shares we buy or sell, with
minimum cost $1 and maximum cost 0.5% of trade volume.
Note that this cost applies for each transaction separately and
each transaction is associated with the purchase or sell of only
one asset. This shows the great advantage of sparse portfolios
in terms of transaction costs. Finally, since the costs depend on
our budget, we assume a budget of $1 million.

We use the index S&P 500 for the period given in Table II
(excluding again the first training window). We construct two
tracking portfolios using the proposed SLAIT algorithm. In the
first we use the ETE measure and in the second the DR mea-
sure. Each portfolio consist of only 40 assets. We consider a
rebalancing frequency of 3 months and a redesign frequency
of 6 months. The training window of the portfolios is again
T, = 252 days. However, the testing window is up to the next
rebalancing or redesign, therefore is set to 3 months.

Fig. 9 illustrates the wealth of the portfolios that use different
tracking measures. We have included a portfolio constructed by
the algorithm MIPg,, for reference. Further, we illustrate the
performance of a portfolio replicating exactly the index S&P
500 (full-replication), without transaction costs. The vertical
dashed red lines correspond to the rebalancing dates and the
black ones to the redesign dates.

It is clear that the constructed portfolios are consistent to
their objective. We observe that the SLAIT-ETE portfolio stays
close to the full-replication portfolio (although we have sub-
tracted the transaction costs). The same holds for the MIPgy,
portfolio, although overall it seems to diverge more than the
SLAIT-ETE portfolio (however, there are some periods that is
closer to the full-replication portfolio). This result is consistent
to the one in Fig. 5(a), where for 40 assets we observe that
the MIPg,, portfolio has a slightly larger daily tracking error.
Finally, the SLAIT-DR portfolio outperforms significantly the
full-replication portfolio as we would expect.

Notice that the SLAIT-DR portfolio has a very large tracking
error compared to SLAIT-ETE. However, it has a much lower
downside risk. In the end, the tracking measures are just proxies
for the real objective of a tracking portfolio, i.e., the return. It is

https://www.interactivebrokers.com/en/index.php?f=commission&p=
stocks
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obvious that in a real investment, the DR measure is in general
more attractive.

D. Computational Complexity of AS,

For the specialized algorithms SLAIT and SLAITH we have
presented two closed-form update algorithms, i.e., AS; and
AS,, that solve the inner optimization problems (24) and (36)
of the general form (15). Here, we compare the performance of
these algorithms in terms of average running time with a direct
implementation of (15) using the MOSEK solver.

For a given problem dimension NV, we randomly generate 500
vectors q € R™V. To test AS; we consider the constraint set W,
with u = 1, while for AS,, we set u = 20/N. We sequentially
increase the problem dimension from N = 100 to N = 2000 to
examine the scalability of the algorithms.

Fig. 10 illustrates the average running time of AS; and
AS, (with and without initialization) compared to the MOSEK
solver. It is clear that the proposed algorithms are more than one
order of magnitude faster. Further, they scale well with dimen-
sion since their average running time increased less than half
order of magnitude for N = 100 to N = 2000.

VIII. CONCLUSIONS

Index tracking, in all of its forms, requires efficient algorithms
for the construction of tracking portfolios. This is a challenging
task since the need for sparsity to reduce the costs, the require-
ment for low tracking error, and the practical constraint for low
running time are in general opposing goals and hard to combine.
In this paper we have derived fast and efficient algorithms for the
high-dimensional sparse index tracking problem. The proposed
algorithms consider a general convex set of constraints. We have
further derived special algorithms that include the non-convex
holding constraints. A general consideration was given in differ-
ent tracking measures and especially in the downside risk. Nu-
merical experiments have shown the superiority of the proposed
algorithms since they combine two key attributes: they match
or outperform (especially in the case of holding constraints)
existing benchmarks in terms of tracking error and require a
minimal running time to converge. These attributes, combined
with the flexibility in tracking measures and constraints, make
the proposed algorithms very attractive for practical use.

APPENDIX A
PROOF OF PROPOSITION 1

In the case where u = 1 we can drop the constraint w < u
since it becomes implicit from the other two constraints, i.e.,
w'l=1 and w > 0. Further, without loss of generality,
throughout this proof we will assume that q is sorted in as-
cending order, i.e., g; < gj fori < j.

With this simplification, the Lagrangian of (15) is:

Lw,pv)=w'wH+q wH+puw'1l-1)—v'w.

From the derivative of the Lagrangian we get:

w; = 5(% —H—Qi)~ (45)

We identify three cases:

a) 1+ ¢q; > 0: It must hold that v; > u + ¢; > 0 since w; >
0 (primal feasibility). Further, if v; > 0 then necessarily
w; = 0 (complementary slackness).

b) p+ ¢ < 0: It must hold that w; > 0 since v; > 0 (dual
feasibility). Further, since w; > 0, it holds that v; =0
(complementary slackness) and therefore w; = —(u +
g¢;)/2 (from (45)).

¢) i+ ¢q; = 0: The only solution is w; = v; = 0 (comple-
mentary slackness).

We can state this result more compactly as follows:

0, 1fM+QLZO7
—(p+q)/2, ifp+gq <O.

Thus, for a given p, only the w;’s corresponding to the smaller
g;’s are not zero. Also, if w; > 0, then w; > 0 for all j < 1.
Now, we need to find the optimal value of the dual vari-
able p. Assume we know that K., weights are positive, i.e.,
WKy, > 0and Wik, . 1.y) = 0. Fromw'1 = 1 (primal fea-
sibility), substituting w given by (46a) and (46a) we get:

(46a)
(46b)

w; =

Kopt

wil=1 = - (n+q)/2=1
i=1
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With some trivial term rearrangements we get the value of p:

Ef(:o g +2
K opt .

Therefore, a straightforward way to find the optimal solution
is to start with K = 1 non-zero weights, compute y from (47)
and check the conditions (46a) and (46b). If they hold then
K = Ky, else we need to increase K.

However, it is not hard to prove that if K < Ky, then p +
qr +1 < 0 which violates (46a). Similarly if K > Ky, then
© + g > 0 which condition (46b)!2. Thus, by knowing if K
should be increased or decreased we can do a binary search to
find Ko that terminates in at most log(V) steps.

= 47

APPENDIX B
PROOF OF PROPOSITION 2

Without loss of generality, we will assume that ¢ = q + 2u
is ordered in ascending order for a general upper bound u, i.e.,
¢; < ¢j for 7 < j. Since this proof follows similar steps to the
proof of Proposition 1 we will skip the details.

The Lagrangian of (15) is:

E(W7/L7V13V2) = WTW+qTW+:u’(1TW_ 1)
—v{w+u,(w—u).

From the derivative of the Lagrangian we get:

w; = %(Vl,i — V2 _M_q'i)~ (48)

Considering the different cases we get the following:
0, if p 4 ¢; > 2u;, (49a)
wy =¢ —(p+q)/2, if0<p+c <2u, (49b)
Ui, if u+¢; <O0. (49c¢)

These conditions state the following: for a given p, a subset of
w;’s that correspond to the smallest ¢;’s will take the maximum
possible value ;. Another subset of w;’s with small enough ¢;’s
will take some non-zero value less than u;. Finally, the w;’s that
correspond to the larger ¢;’s will be zero.

Now, we need to determine the value of p. Assume we
know that K o, weights are equal to u; and Ks o5 weights
are positive and less than w;, ie., Wik, ] = U1K, 0>
0 < WK, bt LK ot Ko op] < WK opt LK 1ot Kz op] and
Wik, o+ 1:8] = 0. Then, from w'1 =1 (primal feasibility),
the value of i is:

ZKl\opl‘FKZ,opl

I{]Aopl
i Rt 1 @ — 235" i + 2

2,opt
Ks.op

In order to evaluate ;1 we need to determine Ky op and K op.
In a similar manner as in the proof of Proposition 1, we can

start with K = 1 non-zero weights and sequentially increase its
value until we find the optimal one. For a given value of K we

= (50)

28tart from K = 1. If K < Kopt it should hold that 1+ g2 > 0 (else
Kope = 1). Use this condition for K = 2 and proceed in the same way. It
can be easily seen that if K' < Kop, (46b) always holds however (46a) cannot
hold. The intuition for the case K > Kop is the same.
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can do a binary search to identify K; weights with maximum
value and K positive weights with a value less than the upper
bound, where K = K; + K5. Unfortunately, if the conditions
(49a)—(49c) are not satisfied for the derived K; and K5 we
cannot determine if we need to increase or decrease the total
number of non-zero weights K. This leads to one linear search
with a binary search in each step with a combined complexity
O(N log(N)).

A better approach is to set K = K, where Koy is the
number of positive weights in the case where u =1 (see
Appendix A), since by imposing an upper bound constraint
there will be at least K weights that are not zero.

An interesting point is that K5 o, cannot be zero since it
is the denominator in (50). We know that K op + K2 op >
0 must hold, i.e., there is at least one non-zero weight, since
w1 = 1. However, for Ks ope = 0 we get = +00 and from
the conditions (49a)—(49c) we see that all the weights should be
zero. Therefore, this observation shows that it is not possible all
the non-zero weights to be equal to their upper bound u; (since
then Ks op = 0). Although theory shows that we cannot get a
solution that all the non-zero weights are equal to their upper
bounds, in practice this could happen if we have a group of some
extremely negative ¢;’s while the rest of ¢;’s are much larger. In
this case, due to roundoff errors and finite precision, a solution
where all the non-zero weights are equal to their upper bounds
is possible and it needs a special consideration.

Finally, in the special case where u = u1, p becomes:

ZK]J)]J[JFKZ.(W[

i—Kyopt 1 4 — 251 0ptt £ 2

KZ‘opt

= 51)

Further, note that in this case, sorting according to c is equivalent
to sorting according to q.

APPENDIX C
PROOF OF LEMMA 4

Consider the concave function f(z)=+/z for = € [0, u].
An upper bound of a concave function at any point x; is its
first-order Taylor approximation, i.e.,

1
\/Eﬁ \/1'7()"‘ m(l’_xo)-

By setting 7 = (aw + (3)? + € we get the following bound:

(qw + ()2 + €

a?(w? — wd) + 2aB(w — wp)

2 2
< V(awy + B)2 + € + et LT )
B o?w? + 2afw + const
~ 2/((aw + B + &) '

By majorizing the square root term of 71,,7571(10, w*)) fol-
lowing the aforementioned approach, the result of Lemma 4 is
straightforward.
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APPENDIX D
PROOF OF LEMMA 5

For convenience set z = r’ — Xw. Then:

1 M
DR(w) = =|(2)" [, = 7 > 2.
i=1

where

zi, ifz; >0,
O, if Zi S 0.

zZ; =

Now, we can majorize each 72 term to get an upper bound

for DR(z). We need to consider two cases, i.e., majorization on
ZW > (0 and on a point zgk) <0.
1) For a point z.*) > 0, f1(2|2")) = 22 is an upper bound
of 22, with fi (%|2")) = ()7 = (5")2.
(k) <, f2(2i|sz)) = (2 — sz))Q is an up-
k)) _ (Z(k> _ Z(k))Q _

i
i i

a point 2

2) For a point 2

per bound of Z?, with f5 (sz) |2;
~(k
0= (2",
For both cases the proofs are straightforward and they are
easily shown pictorially. Fig. 11 illustrates these two cases.

Now, we can majorize 7 at any point zzgk') as follows:
) fi(zi \zgk)), if sz) >0,
%< k k
fZ(ZL‘Zz( ))’ ile-( ) <0,
(z — 0)?, if z}k) > 0,
(zi — zgk))Q, if z,L-(k) <0,
= (z —y")?
where
" 0, if 2" > 0,
Yy, =
AN <o,
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Thus, DR(z) is majorized as follows:

DR

(w) =

=l
el

T

1 1
» # <
i=1

o k 1 2
S (i —yM)? = Tz =y
=1

Substituting back z = r’ — Xw, we get

DR(w) < %Hrb — Xw — y(k)Hz.

where y*) = —(—z("))* = —(Xw(*) —rb)*,
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